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1 PROBLEM AND MOTIVATION
Enterprises increasingly store their sporadically used data on cheap,
elastic cloud storage to save costs. Analytical workloads on that
data often appear in infrequent bursts presenting a high disparity
in input data sizes. Using conservatively over-provisioned compute
resources for this class of workloads is not cost-efficient as a fixed
amount of resources only matches steady demand. Elastic query
processors with a serverless architecture resolve this issue by run-
ning workers in cloud functions [3][9][10]. These systems can start
thousands of functions within seconds, enabling elasticity down to
query pipeline granularity. Moreover, serverless query processors
come at no cost for idle times.

While cloud functions are well-suited for embarrassingly parallel
tasks [7], they struggle with blocking operators such as joins, sorts,
and aggregations as they require data exchange between the work-
ers. Since cloud functions do not support direct communication,
they need an intermediary storage layer to exchange ephemeral
data. Elastic cloud storage services typically offer low prices to
store large amounts of data but charge customers by the number of
requests they make to the service [2][5][8]. These costs can quickly
dominate the overall query price as data exchanges with thousands
of cloud functions can induce millions of requests. Another chal-
lenge for serverless data exchange with a large number of workers
is data skew, leading to severe input size imbalance and highly
divergent worker processing times.

In contrast to single-node and shared-nothing systems, run du-
ration does not solely define cost-efficiency for a serverless query
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Figure 1: Fully-meshed serverless data exchange

processor. A serverless data exchange approach must consider pric-
ing as a second aspect as its cloud infrastructure induces costs
depending on the service usage patterns. Therefore, serverless data
exchange must be fast while causing little service cost. Apart from
cost-efficiency, consistent query performance (i.e. performance ro-
bustness) is critical to data analytics users [1]. Thus, the exchange
must process diverse sets of data with predictable processing times
and low variance.

2 RELATEDWORK
Lambada [9] and Starling [10] are serverless query processors in-
troducing intermediate file formats and multi-stage data exchange
strategies to reduce request costs. However, they do not further
investigate the price-performance trade-offs inherent to these ap-
proaches. Moreover, both systems only process uniform data in
their evaluations, disregard skewed data, and do not address per-
formance robustness issues. Locus [11] partially circumvents the
request pricing issue by deploying in-memory stores for their data
exchange. Thereby, they introduce a pre-provisioned resource with
running costs, limit the storage elasticity for intermediate results,
and eliminate the serverless pay-per-query quality. Boxer [12] is
a system using TCP hole punching to enable direct communica-
tion between cloud functions. It allows the functions to exchange
data without request costs or additional long-standing resources.
On the other hand, direct communication makes cloud functions
more vulnerable to failure due to load imbalance. Furthermore, it
impedes a system’s ability to rescale compute resources sponta-
neously within a query. Wawrzoniak et al. also admit that their
system is at a prototypical stage and still lacks stability.

3 APPROACH
To address the challenges above, we introduce a cost-efficient server-
less data exchange approach with robust performance. The ap-
proach is based on the exchange operator [6], in which producer
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Figure 2: Relative cost-efficiency in GB/s/$ for different meth-
ods of data exchange on the TPC-H lineitem table with dif-
ferent scale factors. SF1 uses ten concurrent cloud functions,
SF10 uses 100, and SF100 uses 400.

tasks pre-partition an input table and assign each partition to one
consumer task. Afterwards, the consumer tasks can concurrently
execute a blocking operator on distinct data subsets. For a serverless
data exchange (cf. Figure 1), a stage of cloud functions _ performs
the producer tasks by executing partition operators and exporting
the partitions to a shared cloud storage layer. After that, each cloud
function in the second stage imports its assigned partitions and
executes the blocking operator on them.

For cost-efficiency, the data exchange must minimize the number
of requests to the storage service. To minimize writes, our approach
introduces a data layout to store multiple partitions in one file so
that each worker only must make one write request. The export
operator writes one partition after the other to the file and stores the
partition row-ranges in the file tail. Then, workers in the next stage
execute the import operator, which reads the file tail to retrieve the
row-range for their target partition. Afterwards, the operator reads
that range from the input file to import the partition.

Analogous to Lambada [9] and Starling [10], our approach uses
a multi-stage group exchange to reduce the number of reads. This
strategy reduces the request number by adding a stage that pre-
combines groups of partitions. Thereby, workers in the following
stage only read one file per group instead of one file per worker
in the previous stage. The multi-stage group exchange drastically
reduces the number of requests but introduces cloud function run
time and costs with every additional stage. Therefore, this work
investigates the strategy’s inherent price-performance trade-off.
For example, Figure 2 displays the cost-efficiency of a single-stage
exchange and a 2-stage group exchange on the TPC-H lineitem
table with different scale factors and cloud function counts. It shows
that the group exchange is only preferable for larger amounts of
data as the request costs only then become significant.

Apart from the cost-efficiency aspect, the data exchange ap-
proach must also show a robust performance. During the exchange
process, skewed data can lead to unevenly sized partitions resulting
in unevenly balanced input load and, therefore, diverging process-
ing times between cloud functions. As a load re-balancing system,
our work introduces an over-partitioning strategy. Instead of cre-
ating one partition per consumer, each producer creates multiple
partitions and returns their sizes to the scheduler. Knowing the
partition sizes, the scheduler then assigns sets of partitions to each
worker to even out input size differences.With the over-partitioning
feature, the data exchange approach re-balances the input load and

reduces the run time divergence between cloud functions. Thus,
it improves the performance consistency for queries on data with
different levels of skew.

Despite the over-partitioning feature, partitions still may diverge
in size, e.g., if a large fraction of a column consists of a single value.
Our work approaches this issue with a partitioned cartesian join
using the elasticity of serverless systems to ensure robust perfor-
mance. Figure 3 shows how additional cloud functions can help
break up large partitions to enable distributed join processing. The
approach divides a partition 𝑝0 from the left input table 𝑅 and the
right input table 𝑆 into 𝑛𝑅 and 𝑛𝑆 sub-partitions. Then it invokes
𝑛𝑅 ∗ 𝑛𝑆 cloud functions so that each joins one sub-partition from
the left with one from the right side. Note that 𝑛𝑅 or 𝑛𝑆 can be
1 if only one side has a large partition. In that case, each cloud
function imports a full partition from one side and joins it with a
sub-partition from the other side. With the serverless partitioned
cartesian join, each worker in the join stage processes a similar
amount of data. Thus, it improves the performance robustness but
quadratically increases the number of cloud functions, raising com-
pute costs. Consequently, our work analyzes this trade-off between
price and performance.
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Figure 3: Serverless partitioned cartesian join. Each high-
lighted cloud function joins one sub-partition on the left
with one on the right side.

4 CONTRIBUTION
In this work, we contribute a serverless data exchange approach
built upon the Skyrise elastic query processor [3]. The approach
includes a file layout for intermediate data and a multi-stage group
exchangemethod to improve cost-efficiency. Furthermore, our work
introduces the partitioned cartesian join and an over-partitioning
strategy for robust performance with evenly distributed input loads.
We evaluate these features by processing data exchanges on TPC-H
and JCC-H [4] tables with different scale factors and synthetic data
with different skew characteristics. Moreover, the final work evalu-
ates multi-stage group exchange and over-partitioning separately
and combined to indicate sweet spots for cost-efficiency and per-
formance robustness. Finally, it investigates the price-performance
trade-off inherent to the multi-stage exchange and the serverless
cartesian join.
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